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ABSTRACT

Motivated by high resource costs and privacy concerns that characterize centralized
machine learning, federated learning (FL) emerged as an efficient alternative that
allows the participating clients to collaboratively train global model while keeping
their data local. In practice, distributions of clients’ data vary over time and from
one client to another, creating heterogeneous conditions that deteriorate perfor-
mance of conventional FL algorithms. In this work, we study an FL framework
where clients train on heterogeneous time series data and introduce to these settings
Fed-REACT, a novel federated learning method leveraging representation learning
and evolutionary clustering. The algorithm consists of two stages: (1) in the first
stage, the clients learn a model that extracts meaningful features from local time
series data; (2) in the second stage, the server adaptively groups clients into clusters
and coordinated cluster-wise learning of task (i.e., post-representation) models for
local downstream tasks, e.g., classification or regression. We provided theoretical
analysis of the first stage of the proposed algorithm, and demonstrated its high
accuracy and robustness in experiments on real-world time series datasets.

1 INTRODUCTION

Distributed training of machine learning models has helped fuel recent advances in a variety of
applications including recommendation systems, image recognition, and conversational Al, to name
a few. Federated Learning (FL) (McMahan et al.,|2017), in particular, received significant attention
as it facilitates collaborative privacy-promoting training of a global model that can subsequently be
deployed on the participating clients’ devices for local tasks. However, the now classical FedAvg
algorithm (McMahan et al.| 2017) and its variants assume independent and identically distributed
(IID) data, which often does not reflect real-world scenarios. Indeed, since clients collect data
locally at different times and locations, the training sets are typically heterogeneous across clients in
terms of both volume and statistical distribution. Data heterogeneity has been recognized as a major
challenge in federated learning (Zhao et al., 2018) — when local models are trained on non-IID data,
simple (potentially weighted) averaging during aggregation generally results in underperforming
global models and may lead to unacceptable performance on local tasks. Consequently, a number of
techniques for mitigating the impact of data heterogeneity in FL has been explored (see, e.g.,|L1 et al.
(2020) and the references therein). Moreover, when an FL system involves a large number of clients
(e.g., in cross-device scenarios), the communication overhead required to support the transmission
of local updates may become prohibitive. Such large-scale settings may also be characterized by
intermittent availability of the clients, rendering the coordination of the training process challenging.
To this end, approaches that group clients into clusters, deploy cluster-aware sampling strategies, and
ultimately train cluster-specific models, have been investigated in literature Mansour et al.[(2020);
Kim et al.|(2021)).

In many real-world applications including healthcare, autonomous driving, and finance, the data
collected by clients naturally comes in the form of time series. While the above FL methods have
proven effective for static heterogeneous data, most are not designed to handle time series data
characterized by an additional layer of heterogeneity arising from the temporal dimension. Kim et al.
(2021)) proposed a framework that leverages a generative adversarial network (GAN) to group users
and dynamically adjust resulting clusters without sharing raw data. However, this approach relies on
clustering snapshots of temporal data, which may lead to erroneous declarations of abrupt changes to
cluster membership over time. An alternative to snapshot clustering comes in the form of evolutionary
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clustering (Xu et al.| (2014)) which incorporates historical data to inform cluster membership decisions,
generally allowing for smoother transitions and more stable clustering solutions.

1.1 CONTRIBUTION OF THIS WORK

The contribution of this work can be summarized as follows:

1. To the best of our knowledge, this work is the first to formally investigate the problem
of federated self-supervised learning on heterogeneous time-series data. There are two
sources of data heterogeneity in such FL systems: Inter-client distribution diversity, arising
from the differences in data distribution across clients, and intra-client data heterogeneity,
i.e., potential non-stationarity of the data observed locally by each client. We propose
Fed-REACT, a novel Federated learning method leveraging Representation learning and
EvolutionAry Clustering for Time-series data, that consists of two learning phases: In the
first phase, which essentially deals with inter-client data heterogeneity, the clients rely on
self-supervised learning to collaboratively learn meaningful features, while in the second
phase, addressing intra-data heterogeneity, temporally-evolving clusters of distributionally
similar clients use the extracted features to train task (i.e., post-representation) models.

2. In order to accomplish the goal of the second phase of Fed-REACT, we leverage evolutionary
clustering to dynamically group clients based on the similarity of their task model weights.
This is rendered difficult by the variations in those weights which are exacerbated when
the training batches are small. To address this concern, we introduce an adaptive forgetting
factor which facilitates clustering based on both current as well as historical weights of
the task models, ensuring more accurate/stable clustering solutions. We investigate three
strategies aided by adaptive forgetting: (a) time averaging; (b) weighted averaging with
forgetting; and (c) Kalman smoothing utilizing expectation-maximization. The efficacy of
these strategies is presented in the results section.

3. We provide theoretical analysis of feature learning on time-series data in federated learning
systems. Specifically, we consider a global regret function for a linear feature model and
apply time-smoothed gradient descent for time-series data. We show that with properly
selected step and smoothing window size, the regret converges to a small value.

1.2 RELATED WORK

Federated learning allows participating clients to collaboratively train a global model while keeping
the training data local and private; the clients may subsequently deploy the resulting model to local
inference tasks. However, the heterogeneity of data that is generally collected at different locations
and times poses significant challenges. In particular, data heterogeneity often leads to performance
degradation of the trained models, motivating various efforts to address this issue.

On another note, self-supervised learning (SSL) has shown promise in distributed learning systems,
particularly when handling large imbalanced datasets (Wang et al., 2022)). Unlike supervised learning,
SSL uses a two-stage approach: extracting features from unlabeled data, followed by utilizing these
features when training for downstream tasks. While SSL has proven effective for static data in fields
such as natural language processing and video processing, its applications to time series data have
received less attention |Chen et al. (2020); Chen & He|(2021)); |Chen et al.[(2024).

In another development, |Fortuin et al.|(2018]) and |[Franceschi et al.|(2019)) introduced methods for
learning temporal representations, for which the latter leveraged causal dilated convolution and
time-based negative sampling. (Wu et al.| (2022) considered multi-periodicity in time series and
proposed TimesNet to learn intraperiod- and interperiod-variations from temporal sequences. Nie
et al.[(2022)) designed a Transformer-based self-supervised method, PatchTST, to improve the long-
term forecasting accuracy. More recent work by [Fraikin et al.[(2023) and [Eldele et al.| (2024) has
explored self-supervised approaches to capturing temporal embeddings and long- and short-term
dependencies. TimeLLLM [Jin et al.[(2023) further reprogrammed time series input into text prototype
representations to adapt large language models to time series forecasting. Despite these advancements,
most research on time series representation learning remains focused on centralized settings, with
relatively few studies addressing distributed learning systems.
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When clustering time series data, evolutionary methods aim to account for the dynamic nature of the
objects being clustered. These methods often outperform snapshot clustering which only considers
data at specific time points. Examples of evolutionary clustering methods include Xu et al.[(2014)
which introduced the Adaptive Evolutionary Clustering Algorithm (AFFECT), an iterative technique
that updates a weighted affinity function to maintain temporal continuity in clustering. |Arzeno &
Vikalo| (2019) subsequently proposed Evolutionary Affinity Propagation (EAP), a method that groups
data by message exchange on a factor graph. However, EAP is limited to offline scenarios and
struggles to handle streaming data effectively. In the federated learning system, clustering techniques
have been employed to group clients with similar data distributions. |Ghosh et al.|(2020) proposed
Ierative Federated Clustering Algorithm (IFCA), which determines cluster membership based on
similarity coefficients. |Li et al.[(2021a) proposed the Federated Soft Clustering (FLSC) method,
demonstrating that allowing overlapping cluster memberships can significantly enhance performance.
More recently, Mehta & Shao| (2023) presented an agglomerative clustering method for federated
learning, which greedily identifies cluster centers through gradient updates.

1.3 PROBLEM STATEMENT

We consider a federated learning system with n clients in which each client collects local time series
data with features z € R4*T and label y, where d denotes the feature dimension and 7" denotes
the maximum length of the time series data. A server coordinates collaborative training of a global
model by collecting local updates from the clients, aggregating them, and distributing the aggregated
updates among the clients. The dataset at client ¢, containing the local time series data, is denoted
by D;(z,y). The distribution of D; varies from one client to another, naturally leading to the data
heterogeneity in the system. In a self-supervised learning framework, a feature-extraction function
fo(+), parameterized by 6, is learned to extract the meaningful representations from the input data;

this is an encoder that learns the mapping R%*”T — R?. The representations can then be utilized for
downstream supervised learning tasks. Depending on the task (e.g., regression or classification), a
lightweight task function fy,,_, (-), parameterized by 6,51, can be trained on the features extracted
from a much smaller set of labeled samples.

The remainder of the paper is organized as follows. Section 2 presents details of the proposed method.
Section 3 provides theoretical analysis of the algorithm’s performance. Section 4 reports experimental
results, while Section 5 concludes the paper.

2 ALGORITHM DEVELOPMENT

Our proposed approach is organized in two phases: in the first phase, the method learns lower level
representations using a feature model while in the second phase it captures higher level features and
facilitates downstream tasks. The main reasoning for such an organization is in meaningfulness of
sharing the lower level feature representations of input vectors across clients regardless of their local
data distributions. In the case of images, for example, two clients may own data coming from vastly
different distributions; however, objects in images typically share low level features such as edges
and corners. It would thus be desirable if feature model learning could include all clients regardless
of local data distribution — this is enabled by training the encoder in a federated manner. Specifically,
the encoder training is focused on minimizing the contrastive loss (Chen et al.| (2020); [Franceschi
et al.[(2019)). Let the reference anchor 27/ be any given time series data, let {9} 2, denote a set
of R randomly selected negative samples, and let 7°° be a positive sample. Then the contrastive loss
function is defined as

Lz, 2P {a"9} L5 0) = —log(o(f(«";0)" f(27°%;6)))
R
— > log(a(—f(a";0)" f(@"9;0))), (D
r=1

where f(- ;) denotes the output of the encoder parameterized by 6 and o(-) denotes the sigmoid
function. Minimization of the loss function ensures that the features extracted from the anchor z"¢f
and its positive sample are similar to each other, while the features extracted from the anchor and its
negative samples differ from each other. For time series data, the positive sample is a sub-sequence
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from the same trajectory, while the negative samples are sub-sequences from other trajectories. The
encoder being used is a Causal CNN with exponentially dilated convolutions, known to capture long
range dependencies more effectively than full convolutions (Franceschi et al., 2019). The complete
federated representation learning procedure is formalized as Algorithm I}

In the second phase, the focus is shifted to downstream tasks. The task model captures higher level
features specific to local data properties; it is therefore meaningful that clusters of clients with similar
data distributions collaboratively learn shared task model weights. The choice of the architecture
of a task model is driven by the downstream task category: for classification tasks we adopt SVMs,
while for regression problems a simple linear layer trained using an ¢5 loss function can be deployed.
Note, however, that clients cannot communicate label distributions due to privacy concerns; as an
alternative, we pursue clustering of the clients based on the weights of their respective task models.
A simple approach could be that the server collects task model weights from clients in each round
of training and employs Agglomerative Hierarchical Clustering to organize the clients into clusters.
Detailed description of this approach to clustering is formalized as Algorithm 3]in the appendix.

This clustering method, however, only considers snapshot of temporal data and is incapable of
accounting for the correlations within time series. Further challenges stem from the following:

1. The number of labeled samples used to train a task model is much smaller than the number
of unlabelled samples used to train the encoder.

2. Typically, clients can store labelled data only for a limited amount of time before the data is
deleted or replaced by newly collected samples.

Consequently, the task models trained in a single round (i.e., on a temporal snapshot of time series
data) may not be sufficiently reflective of the local data distributions, ultimately also leading to
incorrect clustering results. To make the clustering phase of our algorithm robust to training variations,
we rely on Adaptive Evolutionary Clustering (Xu et al., 2014) where the clusters are allowed to
evolve over time. Let us define the underlying similarity matrix at time ¢, ¥y, which captures client
relationships within and across clusters. The observed similarity matrix, W4, is a noisy version of 1/,
ie.,

Wi =1 + Ny, 2
where each element of Wy, [W¢];. ;j» denotes the cosine similarity between the vectorized parameters
of task models of clients 7 and j, and where N, denotes the noise. Evolutionary Clustering Algorithm
(Chakrabarti et al.|(2006)) incorporates the estimate of the similarity matrix at time £ — 1, zﬁt_l, using
a forgetting factor «, to obtain the current estimate

Yy = a1 + (1 — )Wy, (3)
with initial Wy = 0. Adaptive Evolutionary Clustering Algorithm (AFFECT) by |Xu et al.|(2014)
builds upon this to propose an algorithm that iteratively estimates the forgetting factor at each time

instant to obtain both a; and 1@,

by = oythro1 + (1= )Wy, 4
Once the estimate 1), is obtained, one can assign cluster membership to the clients using Agglomera-
tive Heirarchical Clustering as described previously.

Algorithm 1 Fed-REACT Phase 1: Encoder training

1: Imput: Number of rounds 7', number of clients K, initialized global encoder parameters 6
2: for eachround ¢t = 1,2,...,7 do

3 for eachclientk =1,2,..., K do

4 Client k& downloads current global model parameters 6;_1

5 Client k updates parameters 0¥ using local time series data

6 Client k uploads updated parameters 67 to the server

7 end for

8:

Server aggregates collected updates as
K

nk k
b= —0f,
k=1
where ny, is the number of samples on client k and n = 25:1 ny,
9: end for
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Having discovered temporal dynamics of the underlying clusters of clients allows us to explore
several strategies for combining weights of task models (e.g., SVM parameters) calculated in different
rounds of training. In particular, we explore the following three approaches to combining parameters
of the cluster-specific task models evaluated throughout the training process:

1. Approach 1: Simple Temporal Averaging (A1). Parameters of the task model are obtained

by taking the sample mean, i.e.,
. t 1
gask,tJrl = magask,t + mngask,t' (5)

Here, 07, , denotes the parameters of the task model for cluster ¢ computed solely based
on the temporal snapshot of data at time ¢, while éfas 1.+ denotes the parameters computed
based on 05, ;. 1,605, s 2 - 0%, a1 o The initial value 65, _, | is set to 605, . |.

2. Approach 2: Weighted Averaging with Forgetting (A2). In this approach we use the
adaptive forgetting factor «; returned by the evolutionary clustering algorithm to update the
weight estimate according to

ozfask,t+1 = O‘togask,t + (1 - O‘t)afask,t (6)

3. Approach 3: Kalman Smoothing with Expectation Maximization (A3). In this approach,
we treat clustering solutions up to time ¢, {07, ;. ,}5_, as “measurements”, and find the

optimal linear estimate of 6, , via the Kalman Filter (Welch et al.} |1995). In other words,

we think of {67, . k’s}fs:l as if they were noisy observations of the true parameters of the
task model, evolving according a state space model with an unknown state transition matrix
F, innovation noise covariance (), and measurement noise covariance R. These unknown
parameters are iteratively estimated via the Expectation-Maximization algorithm (Shumway

& Stoffer;, |1982); details are provided in the appendix.

Algorithm 2 Fed-REACT Phase 2: Task model training with evolutionary clustering

1: Imput: Number of rounds 73,5k, number of clients K, cluster number C, trained encoder 61

2: for eachround ¢t = 1,2, ..., Ty, sx do

3 for clientk =1,2,.., K do

4: Client k trains the task model on randomly sampled local dataset M¥

5 Client k uploads the parameters Ofas k¢ Of the task model to the server

6: end for

7. Server clusters clients based on the weights of the task models {6F _ m}kK:l using AFFECT

algorithm to obtain the cluster membership of C clusters, {Sf}$_; and adaptive forgetting
factor «v.

8: forclusterc=1,2,..,C do
9: Server aggregates the task models of all clients within cluster S;
IMEL
C
task,t — Z j etask,t
keS¢ ZjeSf |Mt|

10: ift > Tiusr or S§ = S, then

11: Compute éiaskﬁ; using Approach Al, A2 or A3

12: Server transmits ét(::ask,t to all clients k € Sf

13: end if

14:  end for

15: end for

3 THEORETICAL ANALYSIS

In this section, we provide theoretical insights for the first phase of Fed-REACT algorithm, i.e.,
representation learning to heterogeneous time-series data. In particular, we focus on the convergence
property of the time-varying objective function under assumption that each client trains a linear
encoder via the dynamic time-smoothed gradient method. For the sake of tractability, we consider
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the SSL formulation simplified from equation[I]and utilizing a local loss function defined as

1
fsspk(0) = —E[(0(zr,:) + k)T (0(z0) + &0)] + 5H9T9||2
at client k, where &, ; and £ ;w‘ denote random noise added to the data sample xy, ;, while the global
objective is defined as

fssL = Z||Z;)k||fSSLk 0).

This objective is a variant of the contrastive loss equation|I]obtained by replacing the normalization via
negative signals by an alternative regularization term. Optimizing fssy, is equivalent to minimizing

(0) = |X — 070]|2 where X = 3, Pe X and Xy, = By, (227) = iy 1% 2 527 . the

empirical covariance matrix of client £’s data (Wang et al.,[2022).

To proceed with the analysis, we make the following assumptions regarding the local loss function.

Assumption 1. 1. Each loss function f, ; is bounded above by M for all clients i and times t.

2. Each loss function f ; is L-Lipschitz and 3-smooth.

3. Each stochastic gradient descent v f () is unbiased and the standard deviation of the estima-
tor is bounded above by o%. The error between the projected stochastic gradient ProjV f ()
and the stochastic gradient N f(-) is €proj = ProjV f(-) — V f(+) with |l€pro||* < €2.

Jin et al.| (2017) have shown that the form of the objective function studied in our work is 16I"-smooth
within the region {x|||z|* < T} for I' > \;(X), implying that the first two assumptions are readily
satisfied. Note that the projected gradient applied by the proposed algorithm guarantees that = remains
within the region at all time steps. The last assumption is standard in optimization literature.

Next, let us specify the update rule applied by client k during the encoder learning phase. Specifically,
the updates follow time-smoothed gradient descent (Aydore et al.,|2019), i.e., the local update is
w—1

17 h =
Orr1,6 =01 — W jgo v ProgV fi—j 1 (0:—5)

1K
01 =— 0 ,
1= Z t41,k

where w denotes the smoothing window size, W Z -0 ny and 7 is the step size. Moreover, we
define the local regret at client & and the global regret as

while the global update is found as

Sty (00) = va”ket J)
and
1 K 1 w—1 )
St (0r) = Z Z v fe—jk(0r—5),
k:l 7=0

respectively. It holds that

E[@St,w,'y(gt)‘at] = VSt,w,'y(et)a E[ﬁst,w,’y,k(at)wt] = vst,w,’y,k(et)a
and that
o?(1—9*)

W2(1—~%)

With this notation in place, we can obtain the following Lemmas and Theorem 1.

E[@St,wﬁ,k(et) VSt JW,Y, k(et)wt]
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Lemma 1. Suppose all of the above assumptions are satisfied. Then for any v € (0,1), 8 and ), it
holds that

2
(= )81 (B < S0 (80) = St (002) + S0 Brs1) = S (6011)
2 2w 2 2
28071 —=7"") m B 0B,
ey ta s TR

Lemma 2. Suppose all of the above assumptions are satisfied. Then for any v € (0,1) and w, it
holds that

M@ +~""" MO -+
St+17wv“/(0t+1) - St,w,fy(ot.pl) < ( 7 ) + ( v )( ’Y)'

w W(l-9)

Lemma 3. Suppose all of the above assumptions are satisfied. Then for any v € (0,1) and w, it
holds that

2M(1 —~")
S,,w, 0;) — S 1w, 6 1 S
t 'Y( t) t+ ’Y( t+ ) W(l—’}/)
Theorem 1. Suppose all of the above assumptions are satisfied. When n = % v — 17, it holds that
T
1 1 5
lim — St w017 < = (648M + 252) + =€2.
Jim 73219t (0017 < (G490 + 20 + 5o

The theorem implies that when an appropriate step size and window size w are selected, the upper
bound is dominated by the second term, i.e., the projection error between the stochastic gradient
and the projected gradient. Therefore, the global regret approaches a (small) value specified by the
gradient projection error.

4 EXPERIMENTS

4.1 EXPERIMENTS ON THE RTD DATASET
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Figure 1: Label distribution for the three clusters generated using 5 = 0.1.

We first evaluate our proposed scheme on the RTD
dataset (Alam et al.} 2020) which contains 3D air-writing  Taple 1: A comparison of self-supervised
trajectories for 2000 samples of each digit (0 — 9). The  and supervised learning.

trajectories vary in length, with a maximum length of
100; shorter sequences are zero-padded to reach the max-
imum length.

Number of clients 10 50

. .. . LSTM - FedAvg 0.732  0.945
The dataset is partitioned into three clusters, generated
using Dirichlet distribution with a parameter 5 = 0.1 LSTM - Fedprox ~ 0.804  0.896

which leads to highly heterogeneous clusters. An exam- LSTM - Ditto 0.863 0.859
ple of label distribution is shown in Fig. |I|; there, Cluster
1 is primarily composed of digits 3 and 6, Cluster 2 con- LSTM - APFL 0.828  0.946

tains digits O, 1, 2, and 5, while Cluster 3 consists of Algorithm+ SVM  0.992 0.948
digits 4, 7, 8, and 9.
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4.1.1 SELF-SUPERVISED VS. SUPERVISED MODELS

The first set of experiments compares the performance of self-supervised and supervised baselines
trained and tested on heterogeneous time series data. When the system has K = 10 clients, Cluster
1 and Cluster 2 each contain three clients while Cluster 3 contains four; when K = 50, Clusters
1, 2, and 3 comprise of 16, 16, and 18 clients, respectively. The local datasets are further divided
into training and testing sets, with a 90/10 split. As benchmarking algorithms we use a supervised
learning model — single-layer LSTM model with a feature embedding dimension of 128 and a hidden
size of 256. Each client performs local supervised training for 100 epochs with a batch size of
50, using the Adam optimizer with a learning rate of 0.001. A total of 10 communication rounds
are conducted, with model aggregation performed at the server. We investigated the following
state-of-the-art methods designed for federated learning with data heterogeneity.

 Fedprox by |Li et al.|(2020).

« Ditto by |Li et al.| (2021b). We set the regularization parameter A to 0.0001 and the number
of accumulation steps to 10.

» Adaptive Personalized Federated Learning (APFL) by |Deng et al.|(2020). Here we set «
and avqdaptive to 0.5 and 1, respectively.

For the self-supervised learning model trained via Algorithm[T|we consider causal time dilated CNNs;
this encoder consists of ten 1D convolutional blocks, with dilation increasing by a factor of two
with each layer. Each block uses leaky ReLLU activation (negative slope 0.01), followed by a linear
layer that outputs features of size 320. The encoder is trained using contrastive loss as outlined in
(Franceschi et al.,|2019). The task model is a SVM classifier that predicts one out of ten classes based
on the encoded features. Each client performs 500 training steps per communication round, with a
batch size of 10, using the Adam optimizer with learning rate 0.001.

The results in the second column of Table || demonstrate that in the system with 10 clients, the
self-supervised model significantly outperforms supervised baseline methods in the considered data-
heterogeneous scenario. The third column shows that our proposed approach maintains the superior
performance over baseline methods in the larger systems that involves 50 clients.

4.1.2 CLUSTERING PERFORMANCE

The second set of experiments evaluates different clustering methods and validates the performance of
Algorithm 2] The Dirichlet distribution parameter is set to 3 = 1.5. The training of task models uses
|MF| = 64 labeled samples for client k at time ¢; a total of 60 communication rounds are conducted.
The baseline clustering methods include snapshot clus-

tering (i.e., clustering based on the current values of Taple 2: Clustering performance in terms
the task model coefficients) and IFCA (Ghosh et al.| of accuracy (averaged across clients). SC
(2020)) where the cluster membership is based on the  stands for snapshot clustering, EC stands
similarity coefficients. Quality of a clustering solution  for evolutionary clustering.

is characterized by the Rand Score between the clus-
ter memberships obtained from the weights of the task .
model and the Ig)round truth. Recall that %he Rand Score Number of clients 10 100

is computed as follows: Let TP be the number of pairs ~ SC (No Past Value) 0.763  0.716
of clients correctly placed in the same cluster by an algo- ~ g~ (No Past Value) 0.859 0.737
rithm, let TN be the number of pairs of clients correctly
placed in different clusters, and let TOT denote the total Fed-REACT w/ A1 0.909 0.750
number of possible pairs of clients; then the Rand Score  peq.REACT w/ A2 0.928 0.751
is calculated as (TP+TN)/TOT. Fig. 2]and Fig. [3] show
the results for 10 and 100 clients, respectively; for the Fed-REACT w/ A3 0.943  0.739
latter, Clusters 1, 2 and 3 contain 33, 33 and 34 clients, IFCA 0.774 0.740
respectively. Fig. [2|demonstrates that Fed-REACT con-

verges to the ground truth in as few as 3 communication FLSC 083 0.729
rounds, while snapshot clustering method struggles to
discover the ground truth due to training variations. The Rand Score of IFCA is a constant 0.2667
and is omitted from the figure. When the number of clients increases to 100, the Rand Score of
Fed-REACT still converges to the ground truth while the baselines suffer from oscillations and fail to
approach the ground truth.
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Figure 2: Rand Index Score vs. the ground truth Figure 3: Rand Index Score vs. the ground truth
for Fed-REACT (our method) and the baseline for Fed-REACT (our method) and the baseline
clustering methods (the system has 10 clients).  clustering methods (the system has 100 clients).

The next set of experiments, obtained on the RTD dataset, compares the accuracy of the clustering
assignments for the aforementioned settings with 10 and 100 clients. Specifically, for each algorithm
we calculate the instantaneous accuracy averaged over 60 rounds. Apart from snapshot clustering and
the IFCA method, we also include among baselines FL with Soft Clustering (FLSC)|Li et al. (2021a)[]
For Algorithm [2] we compare the accuracy obtained using the three approaches to computing the
weights of SVM discussed above. For Approach A3, weset R=7r[,Q =ql, F=1,and Py =1,
and perform a grid search over r, ¢ € [0.001,0.01,0.1, 1, 10]. For completeness, we also include the
results obtained while ignoring past values of the task model weights.

For the above two baselines, we perform simple averaging across rounds (Approach Al). The
results are presented in Table[2] The second column, reporting results for the system with 10 clients,
indicates that by including historical information, evolutionary clustering methods are capable of
discovering the true structure of the clusters and generally achieve higher accuracy than snapshot
clustering techniques. Approach A3 further improves the performance of Fed-REACT in this system.
The last column in Table 2] considers an FL system with 100 clients. The representation learning
phase (Algorithmm) is carried out for 10 rounds, while the task model (i.e., SVM) is trained for 200
rounds. Note that since the grid search over the initialization for 100 clients proved to be expensive,
we reused the initialization for Approach A3 obtained for the experiments involving 10 clients. This
may in part explain why in this setting the performance of Fed-REACT using Approach A3 lags
behind that of Fed-REACT using one of the first two approaches.

4.1.3 ABLATION STUDY

Lastly, we perform an ablation study exploring the relationship between heterogeneity, controlled by
the parameter (3, and the achieved accuracy averaged across clients. To reiterate, smaller value of 3
induces greater level of heterogeneity across clusters. We consider the FL system with 100 clients;
the number of clients per cluster remains the same as in the previous experiments. Since in the setting
with 100 clients Approach A3 lagged in performance behind Approaches 1 and 2, we exclude the
former from the ablation study. The results are presented in Table|3] As can be seen there, benefits of
clustering are more pronounced for highly heterogeneous settings. As the heterogeneity across the
clusters decreases, benefits of clustering diminish and the performance deteriorates.

Fed- Fed-
g | SCMNo 1 EC(No | pprcTw/ | REACTwW/ |  IFCA FLSC
Past Value) | Past Value) Al A2
0.10 0.887 0.887 0.888 0.900 0.889 0.693
0.25 0.868 0.868 0.872 0.871 0.872 0.761
0.50 0.809 0.809 0.816 0.815 0.711 0.735
2.0 0.712 0.721 0.742 0.738 0.730 0.721

Table 3: The effect of heterogeneity on the performance. SC stands for snapshot clustering while EC
stands for evolutionary clustering.

'The Rand Score for FLSC could not be calculated as each client is assigned to more than one cluster.



Under review as a conference paper at ICLR 2025

4.2 EXPERIMENTS ON THE SUMO EV DATASET

In this section, we consider Simulation of Urban Mobility (SUMO) dataset (Krajzewicz et al.|
2012). This set consists of data emulating vehicles driving under varying conditions including
temperature, humidity, elevation, and location. The task, unlike in the previous experiments, is
at core a regression — in particular, the goal is to predict the percentage of battery life available
given the 100-step multivariate time series data as the input. Consequently, while the encoder
architecture remains the same as before, instead of SVM we use a linear output layer. The ve-
hicles in the dataset have vastly different data amounts, ranging from just above 100 for some
to more than 1000 training samples for others. The battery life differs even among vehicles of
the same type, presenting further challenge to the client clustering task. The time series data
include information about latitude, longitude, elevation, temperature, speed, maximum possible
speed, acceleration, and vehicle type. The features are normalized before being fed into the models.
The dataset is divided into the training and testing subsets, with

a 90/10 split; there are 50 vehicles in the test set. The number Taple 4: Performance on SUMO
of clusters is varied from C' = 1, indicating no personalization, EV dataset: Fed-REACT vs. super-
to ¢' = 50, corresponding to the complete personalization of  yised learning baselines.

the output layer.

Similar to the experiments involving the RTD dataset, we com- RMSE
pare Fed-REACT with the LSTM baselines. A crucial differ- LSTM - FedAvg 432
ence, however, is that for SUMO dataset we do not a priori i

know the number of clusters. This is why we test the perfor- LSTM - Fedprox 42.3
mance of our.method for Vari.ous values of C, Fhe total number LSTM - Ditto 42.0
of clusters, with C' = 1 denoting global averaging of the output

layer and C' = 50 denoting complete personalization. The root LSTM - APFL 42.7

mean-square error (RMSE) averaged across clients is presented Fed-REACT (C=1) 24.4
in TableE} As can be seen from the table, the higher the level

of personalization, the lower the incurred RMSE. These results Fed-REACT (C=3) 23.7
suggest that while federated learning of representation models Fed-REACT (C=9) 13.0
on SUMO dataset greatly helps extract meaningful features

from the temporal gata tl}llereirg), the time series generated by Fed-REACT (C=25) 8.8
different vehicles is exceedingly heterogeneous thus warranting ~ Fed-REACT (C=40) 5.8

fully personalized output layers. Fed-REACT (C=50) 13

5 CONCLUSION

In this paper, we studied the problem of federated

self-supervised representation learning complemented by

(semi)personalized task model training. This is, to our knowledge, the first work to consider such
a learning problem in the setting where clients’ data are heterogeneous time series. The proposed
scheme, Fed-REACT, aggregates representation models globally and performs cluster-wise aggre-
gation of task models (e.g., SVMs for classification tasks and dense output layers for regression).
Convergence of the proposed representation learning scheme was studied theoretically, while experi-
mental results on RTD and SUMO EV datasets demonstrated advantage of Fed-REACT over existing
supervised learning baselines. Future work may explore the fully-decentralized setting where the
clients need to learn models for time series data without the help of a coordinating server.
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The appendix is structured as follows: Section A describes the steps of training task models while
utilizing snapshot clustering; Section B presents details of Kalman smoothing and the EM algorithm;
Section C provides the calculation of the forgetting factor o, in the AFFECT algorithm; Section D
contains detailed proofs of Lemmas and Theorem 1; Section E shows the experimental results on
time-smoothed gradient descent.

A TASK MODEL TRAINING ASSISTED BY SNAPSHOT CLUSTERING

Snapshot clustering groups clients based on the current weights of the task model / output layer, and
then averages those weights to arrive at a cluster-specific task model. This procedure is formalized
as Algorithm [3|below. Note that snaphshot clustering may provide satisfactory performance when
clients have exceedingly large number of labeled samples in training batches so that the models do
not experience training variations.

Algorithm 3 Training of the task model assisted by snapshot clustering

1: Initialize: Global encoder parameters 6 obtained after 7" rounds of federated representation
learning presented in Alg.
for clientk =1,2,.., K do
Client k trains the task model on the labeled local data.
Client k uploads the parameters 0%, of the task model to the server
end for
Server clusters clients based on the weights of the task model {6%, , }X | and employs Agglom-
erative Hierarchical Clustering.
for clusterc =1,2,..,C do
8:  Server aggregates the task model within cluster. Let Sf denote the set of clients in cluster c.
Then

SARANE AN

~

c __ % k
gtask - Z Mc etask
kES§
where 1y, is the number of labeled samples on client & and M, = ), s¢ Mk

9:  Server transmits 0, to all clients k € Sf
10: end for

B KALMAN SMOOTHING AND THE EM ALGORITHM

B.1 KALMAN SMOOTHER

Consider the following state space model relating states x; € R™ and measurements y; € R™:

xy = Fap1 + g, )

yr = Hxy + 1y 3
The state equation matrix F' € R™*™ and the process noise ¢; € N(0, Q) drive the evolution of
the hidden state across time whereas the measurement matrix H € R™*™ and the measurement
noise r;, € N (0, R) drive the observability of the hidden state. In our experiments, we assume that
the system parameters F', H, (), R remain constant over time. If the initial state x( is Gaussian, i.e.,
xo € N (o, Xo), it can be shown that the minimum mean square error (MMSE) estimate of x; given
measurements %1, ..., y;, denoted by ;" and equal to E[x;|y1,¥s, ..., ¥, can be found as a linear
combination of the measurements. In particular, the MMSE estimate #;,” can be found via recursive
expressions of the Kalman filter given below.

Predict Step:
&y = Fay, ©)

P =FPF FT+Q (10)
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Update Step: ) R
K, =P HT(HP HT + R)™! (11)
if =27 + Ki(ye — Hay) (12)
Pr = (I - K,H)P, (13)

where P, = E[||z; — El[z:|y1, 2, ... ye—1]||?] and PF = E[||zy — Elxe|yr, yas - ye]||2]-

Once we have iterated through all the NV measurements available, we can perform Kalman Smoothing

through a backward pass using the Rauch-Tung-Streiber (RTS) algorithm. Let :E;TN denote the

smoothed estimate of x; given the measurements ¥, ..., yn, and let P denote the corresponding

tIN
error covariance. The backward pass is initialized with “%EI N= :fcj\} and ]5;,' N = ]5;\? . Then
Gi1 =P F(P)™! (14)
By =8 Gea(@y — 3 (15)
Pttl\N =PL, +Gt—1(PtTN - PG, (16)

As seen in Appendix B.2, the Expectation-Maximization algorithm requires calculation of “lag one
smoothed covariance” defined as PJFHN = El(z; — :%z‘rN)(xt,l - ittl‘N)T|y1, ..»yn]. The
recursive equation for lag one smoothed covariance can be calculated as

Py y_ iy = I —EKyH)FEY (17)
P;H‘N = PG (18)

B.2 EM ALGORITHM FOR KALMAN SMOOTHING

The authors in|Shumway & Stoffer|(1982) explore the estimation of © = {F, @, R} in support of the
state estimation using the Expectation-Maximization algorithm. Under the assumption of Gaussianity,
the conditional expectation of the likelihood

EXlY;é,,, [log(P(y1, ..oy YN, T1y -y TN O)]

+(r)
N

on O, (the estimates of F, R, and Q@ in the 7" iteration of the EM algorithm). Setting the derivative
of the resulting expression with respect to { F, @, R} to zero yields

can be expressed as a function of {Z, "’} ; which are conditioned not only on ¥, ..., yx but also

FUth = BA™! (19)
QU = %(C ~BA™'BY) 20)
N
RU*D = % S (e — Hig ) e — Haf$)" + HE D HT) @1)
where =
N
A=Y B +a N 22)
t;l
B=Y Py +an ey (23)
t;l
C=3 P +aiVaEe T 24)
t=1

The EM algorithm then alternates between the estimates of the parameters © and the (smoothed)
state estimates.
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Algorithm 4 Estimating o iteratively

1: for iteration iter = 1,2, .., MazxIterations do
2:  Estimate S7 given %, j,t—1, G which yield [zﬂt]l ;- In our work, this is done via Agglomerative
H1erarch1ca1 Clustering.

3:  Compute E[[W;];, ;] and Var([W;]; ;) based on Sf as described above
4:  Estimate &, using equation (27).
5: end for

C CALCULATION OF THE FORGETTING FACTOR o

For completeness, we here summarize the derivation of the adaptive forgetting factor presented in
(Xu et al.,2014)). Let K denote the total number of clients, and let L(«) be the Frobenius norm of
the difference between the estimated and the true similarity matrix, i.e.,

L(a) = ||t = avtbroy = (1 = ) Wi|F (25)
E[L(«)] can be shown to take the form

R(a) = Z D {1 =) Var((Wilij) + 2 ([Whilig — [he-1lig)*}, (26)

where [W;];.;, [t]i j and [t););.; denote the entries at index (i, j) of matrices W, 1b; and 1), respec-
tively. To obtain this expression, it is assumed that E[[W;]; ;] = [¢];,; and Var([¢];,;) = 0. Taking
the first derivative of R(«) w.r.t to v and setting it to zero yields
K K
G = 2i1 Zj:l Var([Wii ;) @7
t = R Rk :
doim1 2y ([Welig — [elij)? + Var([Wili ;)

Note that the calculation in (27) requires E[[W;]; ;] and Var([W,]; ;), which in turn requires knowl-
edge of the clustering solution S, which depends on ay. [Xu et al.| (2014) proposed to estimate
E[[Wl;,;], Var([Wy; ;) and o iteratively. Suppose client 1 is assigned to cluster ¢; then for j # I,

E[Wilijl =Y > |\|c g (Wi (28)

i=l jec,j#l

and

E[[Wi: ;] = ZC i (29)

For k and [ in distinct clusters ¢ and d, respectlvely, 1t holds that

E[Wilkd =) —— |0Hd| (30)
i€c jEd
Estimates of the variances can be computed in a similar manner and are thus omitted for the sake of
brevity. The resulting procedure is formalized as Algorithm[4] In our simulations, we set the number
of iterations to 5.
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D PROOF OF LEMMAS AND THEOREM

Using B-smoothness assumption of f; ;, functions, it can be shown that S; is 3-smooth. Then we
have

St,w,’y (9t+1) St ,W, Y (915 K ; St JW,Y, k(0t+1) St,w,'y,k(ot)

K
sztwm (01), 0141 — 0;) + —||9t+1—9t||2

= (VSt (), B4 — 00) + 51001 — 0
_g<vst,w,'y(9t)v @St,w,'y(et) + €proj) — g<vst,w,'y(9t)v @St,w,'y(et) + €proj — VSt (01))
U o, B¢ 2

- §||vst7w,7(9t)H + T”vst,w,’y(ot) + €proj — vst,w,’y(at) + vst,w,’y(ot)H

U
LNV S 0, (80) + preg
where €,,.,; represents the projection error.

Therefore,
Stw~(0t+1) — St (64)
n 0B s n B -
< (5 = VSt O = (5 = VSt (00), VSt (00) + €proj = VSt (602))
2 ~
+ L1V St (8) + €prog = V Sty (0011

<= 198, 01 = (L = TS, 0. F S0 (0) = VS0 60)
s ?xvst e 0)s6ana) + LW& o 00) = V81 0 + B
< 08y OO (L )90 00, 950200 — St 60)
o TG, 0 - S ) + T

By applying the conditional expectation E[-|6;] to both sides of the inequality, we obtain

2
n_np
(Z — T)HVSL/u),’y(at)”Z

2 1— 2w 2 2
S E[Stwq(0) = Stywq (0e41)] + ﬁéM + (Z — % + M)?

2 W2(1 — ~2) 2
B 0.2 1— 72w
= Sty (0¢) — Sta1,w,y(Or41) + Stt1,w,(0r41) — Sty (Or41) + U24M

e
N (Z - ?B N 25)
Rearranging the left and right side terms gives the inequality in Lemma 1.

Next, we derive the upper bounds for Sy 1w, (0¢4+1) = St,w,~ (0r41) and Sg o (0) = Stt1,w,4 (Oet1)-
Recall that each loss function f; is upper bounded by M, i.e., | f:(x)| < M. Then
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St+1,w4011+1) = Stwy(0r41) = Z’YJ frr1—j(Orr1-5) = frj(Ors1-5))

= %[ft+1(0t+l) — [t(Org1) +7fe(0) — v fr—1(0:) +

+ wailft—w—&-Q(ot—w-&-Q) - ’Ywilft—w—o—l(et—w-ﬂ—Q)}
M@+ MA—y""H(1+9)

<
- w W(l-7)
1 w—1
Sty (08) = Sttt (Or41) = ZVJ fe—3(01—5) = frr1-5(0r41-5))
]
< 2M0 ")
W(l—9)

This completes the proof of Lemma 2 and 3.

Using the inequalities above, we derive an upper bound on || V.S , (6;)]? as
VS0 (60) 1

2M(1-~") M(144""Y) M(1—7""1)(147) 98 02(1—7%") 25
- W) W + wasy P rwrasy + (- WT + 57 )e?
B Ca

Substituting n = % yields
IV St (B0) 1

88M 2(1—7“’) w1 (1_,}/10—1)(1_"_7) 20-2(1_,}/2111) 5 ,
<SP LT )L g 5
<5 ¢ T + @+ + T ) R s

86M 2(1—~*) L1y, (=) (A +)y 2071 -9) 5,
< (27 1 w 5
< ¢ T +(@+9"7)+ Ty ) + i e

8BM (1—9")(3+7) Ly, 20%0=97) 5
— 14w 20%(1—~*) 5

o, AT gy g

86M (1 —7") 149" 20°(1—9"") 5,
< 4 5
=T T T ey s
< 325M(2_7w +’Yw_1 20.2(1_7210) +§ )

- 1=7 W2(1-+?%) 8
Wheny — 17,
5
i [[VS, 00 < T (645M +20%) + 2

Telescoping ¢ from 1 to T We obtain

5
ng Z VSt~ (0:)]|% < W(64BM+20 )+ 862T
and
5
Jim Z V500 < (G480 +20%) 4 2
This concludes the proof of Theorem 1.

E EXPERIMENTAL RESULTS ON TIME-SMOOTHED GRADIENT DESCENT

The time-smoothed gradient descent algorithm DTSSGD, proposed by |Aydore et al.| (2019), presents
a regret framework for non-convex models that deals with the concept drift associated with a dynamic
environment. We compare our results with those obtained by training the encoder using DTSSGD.
The experiments are conducted on the RTD dataset with ten clients partitioned into 3 clusters created
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using Dirichlet sampling (8 = 0.1). As before, the encoder was trained for 10 rounds but with the
optimizer set to the one proposed in (Aydore et al., [2019). Training of the output layer consists of a
single round involving all the labeled samples available at a client. We vary the parameter ~y (used to
control forgetting) and the smoothing window size w. The results are presented in Table[5]

vy lw=1l|lw=3|lw=>5|w="T
0.7 | 0.988 | 0.984 | 0.988 | 0.986
0.8 | 0988 | 0.990 | 0.982 | 0.985
0.9 | 0.988 | 0.980 | 0.990 | 0.990

Table 5: Results for Fed-REACT using the optimizer from (Aydore et al.,[2019).

The results suggest that increasing w does not lead to significant performance gain; therefore, in our
experiments we set w = 1.
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